Omnipolar Switch Hall-Effect IC Basics

Omnipolar Switch Hall-Effect IC Basics

介绍

下载PDF版本

提供四种一般的霍尔效应IC设备,提供数字输出:单极开关,双极开关,全峰开关和锁存器。本申请说明中描述了全极开关。类似的应用笔记双极交换机unipolar switches, 和latches提供在Allegro™网站上。

OmniPolar Hall效应传感器IC,通常被称为“OmniPolar开关”,是一种数字输出霍尔效应锁定开关,其与强正或强负磁场一起操作。这简化了应用程序组件,因为操作磁铁可以用杆朝向全峰器件安装。呈现足够强度(磁通密度)的单个磁铁将导致装置切换到其上的状态。在接通后,OmniPolar IC将保持接通,直到磁场被移除,并且IC恢复到其关闭状态。它锁存了改变的状态并保持关闭状态,直到再次呈现足够强度的磁场。

用于检测车辆换档杆的位置的应用如图1所示。换档杆包括磁体(紫色气缸)。微型黑匣子的线条是一系列OmniPolar开关设备。当车辆操作员移动杠杆时,磁铁通过各个霍尔设备移动。磁铁附近的器件经受磁场,并导通,但更多的远程设备不受影响并保持关闭。磁铁的南极或北极可以朝向霍尔设备定向,霍尔设备包的品牌面向磁铁。

Figure 1

图1.使用OmniPolar开关传感器IC的应用。超小型霍尔ICS开关作为磁铁(紫色圆筒)在换档期间移动超过它们。

磁性开关点术语

以下是用于定义过渡点的术语,或者switchpoints.那of Hall switch operation:

Figure 2, the hall effect

Figure 2. The Hall effect refers to the measurable voltage present when an applied current is influenced by a perpendicular magnetic field.

  • B.- 用于磁通密度的符号,用于确定HALL器件开关点的磁场的属性。在高斯(g)或tesla(t)中测量。转换为1g = 0.1 mt。

    B.can have a north or south polarity, so it is useful to keep in mind the algebraic convention, by which B is indicated as a negative value for north-polarity magnetic fields, and as a positive value for south-polarity magnetic fields. This convention allows arithmetic comparison of north and south polarity values, where the relative strength of the field is indicated by the absolute value of B, and the sign indicates the polarity of the field. For example, a −100 G (north) field and a 100 G (south) field have equivalent strength, but opposite polarity. In the same way, a −100 G field is stronger than a −50 G field.
    B.op.- 磁功工作点;霍尔设备接通的强化磁场的水平。所得到的设备输出状态取决于各个设备电子设计。
  • B.rp.- 磁释放点;霍尔器件关闭的弱化磁场的水平(或用于某些类型的霍尔设备,给出阳性b的强化负面的水平op.)。所得到的设备输出状态取决于各个设备电子设计。
  • B.HYS.- 磁开关点滞后。霍尔设备的传递函数在开关点之间的偏移设计,以在磁场中过滤出小的波动,该磁场可能是应用中的机械振动或电磁噪声。B.HYS.= |B.op.- B.rp.|。

典型的操作

OmniPolar传感器IC的SwitchPoint范围在中性场级围绕对称,B = 0g,如图3所示。开关点处于等效场强,但在相反的极性下。例如,假设正(南)极性开关点是操作点,Bop.(S)60克,释放点,brp(s),30克。然后,负(北)极性开关点是操作点,bOP(n)-60 g,和释放点,brp.(N),-30 G.锁存最新状态可防止设备在受弱区域时切换。

An omnipolar switch turns on in a strong magnetic field of either polarity, and the resulting output signal can be either at logic high (up to full supply voltage, VCC.) or logic low (at the output transistor saturation voltage, V出(坐),通常< 200 mV),根据设计的device IC output stage. An omnipolar switch turns off in a moderate magnetic field, and the resulting output signal is the opposite of the polarity in the on state. Like other types of Hall digital switch, these devices do not switch while the magnetic field strength is in the switchpoint hysteresis ranges, BHYS.。In addition, latching the switch state prevents the device from switching while the magnetic field is relatively weak, between the release points,Brp.(N)和B.rp(s)。在切换再次发生之前要交叉的0g点是不必要的。给定的切换事件可以接下来是相同或相反极性的切换事件。

Figure 3

图3.全部开关输出特性。顶部面板在存在强磁场的情况下显示逻辑高电平,并且底板显示在强磁场中切换到逻辑低电平。

Although the device could power-on with the magnetic flux density at any level, for purposes of explanation of figure 3, start at the far left, where the magnetic flux (B, on the horizontal axis) is more negative than the north polarity operate point, BOP(n)。Here the device is on, and the output voltage (V出去,在垂直轴上)取决于器件设计:高(顶面板)或低(底板)。

Following the arrows toward the right, the magnetic field becomes less negative. When the field is weaker than Brp.(N)那the device turns off. This causes the output voltage to change to the opposite state (either to high or to low, depending on the device design).

磁场仍然弱于bOP(n)和B.op.(S)(近b = 0 g,图3的中心),设备保持关闭,锁存输出状态保持不变。即使B比B略强,也是如此rp.(N)或B.rp(s),在开关滞后的内置区域内,BHYS.

在下一个强磁场,如果朝向右侧的箭头是阳性的,则磁场变得更加积极。当场比b强op.(S)那the device turns on. This causes the output voltage to change to the opposite state (either to high or to low, depending on the device design). If instead the next strong magnetic field is negative, following the arrows toward the left, the magnetic field becomes more negative. When the field is stronger than BOP(n)那the device turns on. This causes the output voltage to change back to the original state.

Pull-Up Resistor

上拉电阻必须连接在正电源和输出引脚之间(参见图4)。上拉电阻的通用值是1至10kΩ。最小上拉电阻是传感器IC最大输出电流(吸收电流)和实际电源电压的函数。20 mA是典型的最大输出电流,在这种情况下,最小上拉将是vCC./ 0.020 A.如果电流消耗是一个问题的情况下,上升电阻可能大约50至100kΩ。小心:具有大的上拉值,可以邀请外部泄漏电流接地,即使当器件磁性关闭时,也足以降低输出电压。这不是设备问题,而是相当是在上拉电阻器和传感器IC输出引脚之间的导体中发生的泄漏。采取至极端,这可以缩小传感器IC输出电压,足以抑制适当的外部逻辑功能。

Figure 4

图4.典型的应用程序图。

Use of Bypass Capacitors

有关旁路电容的布局,请参阅图4。一般来说:

  • For designs without chopper stabilization – It is recommended that a 0.01 µF capacitor be placed between the output and ground pins and between the supply and ground pins.
  • 对于具有斩波稳定的设计 - 电源和接地引脚之间必须放置0.1μF电容,并且在输出和接地引脚之间建议使用0.01μF电容。

开机状态

只有当磁场强度超过B时,唯一一个众多设备才能以有效状态为动力op.或B.rp.应用电源时。如果磁场强度在滞后带中,则在B之间op.和B.rp.那the device can assume either an on or off state initially, and then attains the correct state at the first excursion beyond a switchpoint. Devices can be designed with power-on logic that sets the device off until a switchpoint is reached.

Power-On Time

上电时间depends to some extent on the device design. Digital output sensor ICs, such as the latching device, reach stability on initial power-on in the following times.

设备类型 上电时间
非切碎的设计 <4μs.
Chopper-stabilized <25μs.

基本上,这意味着在提供电源之后经过的经过时间之前,器件输出可能不是正确的状态,但是在经过此时间之后,设备输出被保证为正确的状态。

功耗

Total power dissipation is the sum of two factors:

  • 传感器IC消耗的功率,排除在输出中消耗的功率。这个值是vCC.电源电流的时间。V.CC.是否在数据表上指定了设备电源电压和电源电流。例如,给定VCC.= 12 V and Supply current = 9 mA. Power dissipation = 12 × 0.009 or 108 mW.
  • 输出晶体管中消耗的功率。这个值是v(开)(坐)times the output current (set by the pull-up resistor). If V(开)(坐)是0.4 V(最坏情况),输出电流为20 mA(通常最坏情况),功耗耗散为0.4×0.02 = 8兆瓦。正如您所看到的,因为饱和电压非常低,输出中的功率不受巨大的关注。

该示例的总功耗为108 + 8 = 116 MW。将此号码占用在问题的数据表中的额额可图中,并检查是否必须减少最大允许操作温度。

经常问的问题

Q: How do I orient the magnets?

答:磁极磁极朝向器件的品牌面向定向。品牌面部是您找到设备的标识标记的位置,例如部分部件号或日期代码。

Q: Can I approach the device back side with the magnet?

答:是的,然而牢记这一点:如果磁铁的极仍然在相同方向上保持导向,则通过装置的磁通场的取向从前侧方法保持不变(例如,如果南极是南极在前侧方法中更靠近设备,然后北极将在后侧接近靠近设备)。然后,北极将产生相对于霍尔元素的正面场,而南极会产生负场。

问:是否有权衡将设备接近侧面?

答:是的。从包装前侧接近时,可以使用“清洁剂”信号,因为霍尔元件位于靠近前侧(封装品牌面部)而不是背面。例如,对于“UA”封装,带有霍尔元件的芯片在包装的品牌面内为0.50毫米,距离后侧面积约为1.02毫米。(从品牌面对霍尔元素的距离被称为“有源区域深度”。)

问:哈哈效应装置是否会造成非常大的田间损坏?

答:不,非常大的领域不会损坏Allegro霍尔效应装置,也不会这样的场地添加额外的滞后(除了设计的滞后)。

Q: Why would I want a chopper-stabilized device?

A: Chopper-stabilized sensor ICs allow greater sensitivity with more-tightly controlled switchpoints than non-chopped designs. This may also allow higher operational temperatures. Most new device designs utilize a chopped Hall element.

Suggested Devices

标准allegro锁存器列在公司网站上的选择指南中,霍尔效应锁存双极开关

低功耗锁存器列于Micropower Switches/Latches

可能的应用程序亚博尊贵会员

  • Cellular phones
  • 无绳电话
  • 奉献者
  • 掌上电脑

Application Notes on Related Device Types

参考:AN296070